Share Email Print

Proceedings Paper

EMI application of highly conductive plastic composite using vapor-grown carbon fibers (VGCF)
Author(s): Makoto Katsumata; Hidenori Yamanashi; Hitoshi Ushijima; Morinobu Endo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbon fiber plastic composite is prepared using vapor-grown carbon fibers (VGCF) as filler with thermo-plastic resin. Basic electrical properties and the stability of electrical conductivity of VGCF's composite in comparison with those using conventional carbon filler such as PAN- based carbon fibers (PAN) and electroconductive carbon black (CB) are studied. The VGCFs have lower resistivity than those of PAN and CB filler based composites at room temperature. The composite where the VGCF added with CB as mixing filler to matrix resin shows lower resistivity than those using VGCF or CB filler individually. This mixed filler composite has a high EMI shielding effect in the near-electric field. The value of EMI shielding effects is 70 dB at 2 mm sample thickness. On the stability of electrical conductivity, VGCFs and mixed filler composites have better performances than PAN-based ones under tensile stresses, bending stresses, temperature change and exposure test in air at a constant temperature (room temperature and 60 degree(s)C). The VGCF based composites are applicable as a useful electroconductive composite.

Paper Details

Date Published: 23 July 1993
PDF: 9 pages
Proc. SPIE 1916, Smart Structures and Materials 1993: Smart Materials, (23 July 1993); doi: 10.1117/12.148467
Show Author Affiliations
Makoto Katsumata, Yazaki Corp. (Japan)
Hidenori Yamanashi, Yazaki Corp. (Japan)
Hitoshi Ushijima, Yazaki Corp. (Japan)
Morinobu Endo, Shinshu Univ. (Japan)

Published in SPIE Proceedings Vol. 1916:
Smart Structures and Materials 1993: Smart Materials
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top