Share Email Print

Proceedings Paper

Effective moduli of granular and layered composites with piezoelectric constituents
Author(s): Tamara Olson; Marco Avellaneda
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The effective elastic and dielectric moduli of a composite made from piezoelectric materials are examined, with particular emphasis on applications to unpoled piezoelectric ceramics and layered materials. Explicit formulae for the effective moduli and coupling of a layered material are derived. A self-consistent estimate of the moduli of an isotropic polycrystal is obtained through an effective medium approximation (EMA), which takes into account the interaction between each individual grain and the surrounding composite. This estimate shows that the grains behave as uncoupled grains with electric and elastic constants modified by the behavior of surrounding grains. A similar effect is also observed in bounds (established via classical variational principles) on the moduli of a statistically isotropic polycrystal. Numerical implementation of the EMA and bounds show good agreement with data for unpoled barium titanate ceramic. For a general composite with piezoelectric constituents, it is shown that the effective electromechanical coupling can be bounded by the largest coupling factor of the components.

Paper Details

Date Published: 22 July 1993
PDF: 10 pages
Proc. SPIE 1919, Smart Structures and Materials 1993: Mathematics in Smart Structures, (22 July 1993); doi: 10.1117/12.148413
Show Author Affiliations
Tamara Olson, Brigham Young Univ. (United States)
Marco Avellaneda, New York Univ. (United States)

Published in SPIE Proceedings Vol. 1919:
Smart Structures and Materials 1993: Mathematics in Smart Structures
H. Thomas Banks, Editor(s)

© SPIE. Terms of Use
Back to Top