Share Email Print

Proceedings Paper

Monte Carlo modeling of solid state photoswitches
Author(s): Peter W. Rambo; Jacques Denavit
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Large increases in conductivity induced in GaAs and other semiconductors by photoionization allow fast switching by laser light with applications to pulse-power technology and microwave generation. Experiments have shown that under high-field conditions (10 to 50 kV/cm), conductivity may occur either in the linear mode where it is proportional to the absorbed light, in the 'lock-on' mode, where it persists after termination of the laser pulse or in the avalanche mode where multiple carriers are generated. We have assembled a self-consistent Monte Carlo code to study these phenomena and in particular to model hot electron effects, which are expected to be important at high field strengths.

Paper Details

Date Published: 9 June 1993
PDF: 12 pages
Proc. SPIE 1873, Optically Activated Switching III, (9 June 1993); doi: 10.1117/12.146549
Show Author Affiliations
Peter W. Rambo, Lawrence Livermore National Lab. (United States)
Jacques Denavit, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 1873:
Optically Activated Switching III
R. Aaron Falk, Editor(s)

© SPIE. Terms of Use
Back to Top