Share Email Print
cover

Proceedings Paper

Characterization of photodynamic and sonodynamic cytotoxicity by fluorescent probes
Author(s): David Kessel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A variety of porphyrins and related structures can sensitize cells to light; many of these agents can also promote ultrasound-induced cytotoxicity. Subcellular sites of localization sensitizers with a sufficient fluorescence yield can be assessed by fluorescence microscopy, but this becomes difficult when (Phi) F is low. We have explored several indirect procedures for assessing examining loci of photodamage and sonodamage. Damage to lysosomal structures was probed with acridine orange, mitochondria with Rhodamine 123 and the plasma membrane with several diphenylhexatriene (DPH) derivatives. Additional information on alterations in heterogeneity of binding of diphenylhexatriene derivatives to photodamaged cells was provided by a distributed fluorescent lifetime study. Using a sulfonated benzochlorin, which photosensitizes cell-surface loci, we evaluated four DPH derivatives for their sensitivity to membrane damage. Anionic or cationic DPH derivatives were the most sensitive in this regard. Enhanced cytotoxicity associated with ultrasound + porphyrins yielded no detectable effects on mitochondrial or lysosomal structures, and barely detectable changes in membrane interactions with DPH derivatives, suggesting an 'all or none' effect.

Paper Details

Date Published: 18 June 1993
PDF: 10 pages
Proc. SPIE 1881, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, (18 June 1993); doi: 10.1117/12.146319
Show Author Affiliations
David Kessel, Wayne State Univ. School of Medicine (United States)


Published in SPIE Proceedings Vol. 1881:
Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II
Thomas J. Dougherty, Editor(s)

© SPIE. Terms of Use
Back to Top