Share Email Print
cover

Proceedings Paper

Morphology and crystallography of electromigration-induced transgranular slit failures in aluminum alloy interconnects
Author(s): John E. Sanchez; V. Randle; O. Kraft; E. Arzt
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Microstructural and crystallographic characterizations of electromigration induced voiding and damage in Al and Al-2% Cu interconnects are presented. Scanning electron and focussed ion beam micrographs show that extended voiding in wide lines and transgranular slit voids in near bamboo lines are the preferred failure morphologies. Electron back scattered diffraction analysis of transgranular slit failure sites show a preferred <110> slit void orientation. Estimates of stresses required for stress assisted void growth in unpassivated interconnects are shown to be reasonably close to measured stress levels in films and interconnects. The transgranular void process is shown to be preferred over boundary voiding based on usual estimates for the variation of surface energy and random boundary energies in Al. Finally, line edge void growth into transgranular slit failures at favorably stressed and crystallographically oriented grain sites is presented as an empirical model for the observed electromigration induced failures in near bamboo interconnects lines.

Paper Details

Date Published: 21 May 1993
PDF: 10 pages
Proc. SPIE 1805, Submicrometer Metallization: Challenges, Opportunities, and Limitations, (21 May 1993); doi: 10.1117/12.145474
Show Author Affiliations
John E. Sanchez, Max-Planck-Institut fuer Metallforschung and Univ. Stuttgart (Germany)
V. Randle, Univ. of Wales (United Kingdom)
O. Kraft, Max-Planck-Institut fuer Metallforschung and Univ. Stuttgart (Germany)
E. Arzt, Max-Planck-Institut fuer Metallforschung and Univ. Stuttgart (Germany)


Published in SPIE Proceedings Vol. 1805:
Submicrometer Metallization: Challenges, Opportunities, and Limitations
Thomas Kwok; Takamaro Kikkawa; Krishna Shenai, Editor(s)

© SPIE. Terms of Use
Back to Top