Share Email Print

Proceedings Paper

Efficient generation at 4.8 um by doubling of mode-locked CO2 laser radiation
Author(s): Malcolm W. McGeoch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This work addresses the possibility of a high average power coherent light source in the 4.8 micrometers atmospheric window. The approach is to frequency-double the 9.55 micrometers CO2 laser line, yielding 4.775 micrometers . In order to achieve efficient conversion, the intensity of the laser is increased by intracavity resonant modulation, or 'mode-locking'. Efficient conversion in available lengths of doubling material requires an intensity of at least 20 MWcm-2. However, the most efficient CO2 lasers operate with a pulse duration of at least 1 microsecond(s) ec, the characteristic time for energy transfer from N2 to CO2 at 1 atmosphere. Without modulation a fluence of at least 20 Jcm-2 would therefore be needed for high overall system efficiency. With modulation at a 1:10 or better mark-to-space ratio, this fluence is reduced to the 2 Jcm-2 range that typifies the surface damage threshold of available materials. The doubling material chosen for this work was AgGaSe2, silver gallium selenide. A relatively long crystal (35 mm) was used in Type 1 phase-matching. A mode-locked pulse train was generated using a TEA CO2 laser pumped for a duration of 3 microsecond(s) ec, containing 1 nsec pulses spaced by 40 nsec. The 9.55 micrometers line was selected either by injection or by the use of an intracavity grating.

Paper Details

Date Published: 6 June 1993
PDF: 10 pages
Proc. SPIE 1871, Intense Laser Beams and Applications, (6 June 1993); doi: 10.1117/12.145205
Show Author Affiliations
Malcolm W. McGeoch, PLEX Corp. (United States)

Published in SPIE Proceedings Vol. 1871:
Intense Laser Beams and Applications
William E. McDermott, Editor(s)

© SPIE. Terms of Use
Back to Top