Share Email Print

Proceedings Paper

Melt-pool and keyhole dynamics during thin-plate laser welding of steel
Author(s): K. Williams; William O'Neill; William M. Steen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An investigation is made of the melt-pool formed during keyhole welding with a cw CO2 laser on thin plate mild steel. The aim of the study is to analyze the dynamics of the melt-pool and keyhole in order to provide information on the causes of instabilities found during high speed welding. Such problems found during high speed welding include humping, keyhole failure, and surface tension driven melt-pool instabilities. The effects of varying laser power (2 to 4 kW), traverse speed, shroud gas, gas delivery angle, and plate thickness were studied. The methods used included various high speed camera techniques. Two high speed cameras are used, a high speed video camera at a frame rate of 1,000 frames per second and a high speed gated camera used in conjunction with a frame grabber capable of gate speeds as low as 25 ns and freeze frame multi-imaging. The high speed video system was used to gather information on the gross melt-pool characteristics, e.g., shape, length, width, and any other slow changes present (of the order of 100 Hz). It is hoped by correlating these results with theory that an insight into high speed behavior will be obtained.

Paper Details

Date Published: 4 May 1993
PDF: 4 pages
Proc. SPIE 1810, 9th International Symposium on Gas Flow and Chemical Lasers, (4 May 1993); doi: 10.1117/12.144555
Show Author Affiliations
K. Williams, Liverpool Univ. (United Kingdom)
William O'Neill, Liverpool Univ. (United Kingdom)
William M. Steen, Liverpool Univ. (United Kingdom)

Published in SPIE Proceedings Vol. 1810:
9th International Symposium on Gas Flow and Chemical Lasers
Costas Fotakis; Costas Kalpouzos; Theodore G. Papazoglou, Editor(s)

© SPIE. Terms of Use
Back to Top