Share Email Print

Proceedings Paper

Photoinduced charge transfer properties of bolaamphiphile membrane-gramicidrin diad composites
Author(s): David H. Thompson; Jong-Mok Kim; Ciro Di Meglio
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ether-linked bolaform amphiphiles (Langmuir 1992 8, 637; J. Am. Chem. Soc. 1992, 9035) and novel gramicidin-porphyrin `diads' (MRS Symposium Series, Vol. 277, 1992, 93) have been synthesized. Protocols for vectorial insertion of the derivatized gramicidins into bolaform lipid vesicles have been developed and the photochemical behavior of these proteinaceous composite membranes probed in the presence of electron donors and acceptors. Photoinduced electron transfer properties of the gramicidin-porphyrin conjugates were compared in TRIS- buffered dihexadecyl-phosphate bilayer (DHP) and bolaform monolayer membrane vesicles containing dithiothreitol as sacrificial donor and methyl viologen as electron acceptor on both the inner and outer vesicle surfaces. Although the rates of methyl viologen photoreduction varied depending on the mode of diad orientation within DHP bilayer membranes, photoreduction rates were not orientation- dependent in bolaform membrane vesicles containing the gramicidin-porphyrin diad. The relevance of these results on vectorial electron transfer processes in lamellar systems and the design of integrated charge transfer components is discussed.

Paper Details

Date Published: 27 April 1993
PDF: 6 pages
Proc. SPIE 1853, Organic and Biological Optoelectronics, (27 April 1993); doi: 10.1117/12.144055
Show Author Affiliations
David H. Thompson, Oregon Graduate Institute of Science and Technology (United States)
Jong-Mok Kim, Oregon Graduate Institute of Science and Technology (United States)
Ciro Di Meglio, Oregon Graduate Institute of Science and Technology (United States)

Published in SPIE Proceedings Vol. 1853:
Organic and Biological Optoelectronics
Peter M. Rentzepis, Editor(s)

© SPIE. Terms of Use
Back to Top