Share Email Print

Proceedings Paper

Differential pulse code modulation image compression using artifical neural networks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Differential pulse code modulation (DPCM) is a widely used technique for both lossy and lossless compression of images. In this paper, the effect of using a nonlinear predictor based on artificial neural networks (ANN) for a DPCM encoder is investigated. The ANN predictor uses a 3-layer perceptron model with 3 input nodes, 30 hidden nodes, and 1 output node. The back-propagation learning algorithm is used for the training of the network. Simulation results are presented to compare the performance of the proposed ANN-based nonlinear predictor with that of a global linear predictor as well as an optimized minimum-mean-squared-error (MMSE) linear predictor. Preliminary computer simulations demonstrate that for a typical test image, the zeroth-order entropy of the differential (error) image can be reduced by more than 15% compared to the case where optimum linear predictors are employed. Some future research directions are also discussed.

Paper Details

Date Published: 8 April 1993
PDF: 7 pages
Proc. SPIE 1903, Image and Video Processing, (8 April 1993); doi: 10.1117/12.143233
Show Author Affiliations
Majid Rabbani, Eastman Kodak Co. (United States)
Soheil A. Dianat, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 1903:
Image and Video Processing
Majid Rabbani; M. Ibrahim Sezan; A. Murat Tekalp, Editor(s)

© SPIE. Terms of Use
Back to Top