Share Email Print

Proceedings Paper

Highly excited vibrational levels studies using time-resolved Fourier transform emission spectroscopy
Author(s): Gregory V. Hartland; Dong Qin; Hai-Lung Dai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The spectroscopy and dynamics of highly excited vibrational levels of the a1A1 and b1B1 states of CH2 were studied using time-resolved Fourier transform emission spectroscopy. The use of a Fourier transform spectrometer allows efficient acquisition of dispersed fluorescence spectra over several thousand cm-1 range in the visible, with better than 1 cm-1 resolution, from this short lived and low concentration species. Furthermore, the temporal evolution of the dispersed fluorescence spectra due to collisional relaxation can be monitored with 50 ns time-resolution. The results presented and discussed in this paper are: (1) the state-to-state rotational energy transfer and reactive cross- sections for b1B1 (0, 16O, 0) CH2; and (2) rotational analysis of several previously unobserved high vibrational levels of the CH2 a1A1 state.

Paper Details

Date Published: 22 April 1993
PDF: 12 pages
Proc. SPIE 1858, Laser Techniques for State-Selected and State-to-State Chemistry, (22 April 1993); doi: 10.1117/12.143079
Show Author Affiliations
Gregory V. Hartland, Univ. of Pennsylvania (United States)
Dong Qin, Univ. of Pennsylvania (United States)
Hai-Lung Dai, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 1858:
Laser Techniques for State-Selected and State-to-State Chemistry
Cheuk Yiu Ng, Editor(s)

© SPIE. Terms of Use
Back to Top