Share Email Print

Proceedings Paper

Emittance, brilliance, and bandpass issues related to an inclined crystal monochromator
Author(s): Albert T. Macrander; Dean R. Haeffner; Paul L. Cowan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The inclined double crystal monochromator arrangement is very effective in handling high heat loads and holds considerable promise as a monochromator for undulator beams at third generation synchrotrons. Results for the ideal inclined crystal case have been obtained by dynamical diffraction calculations, and diffraction results for the (111) reflection of silicon are presented for an inclination angle of 85 degree(s) and energies of 5 keV and 13.84 keV. The diffraction characteristics resemble closely diffraction from a symmetric (111) plane of silicon. However, the inclined and noninclined cases are not identical. Diffraction in the inclined case is slightly different due to refraction. The full width at half maximum of the Darwin-Prins reflectivity curve is slightly increased (approximately 1%), and the angles of the outgoing beam after one reflection are slightly altered. That is, except for a wave incident at the Laue point in reciprocal space, the diffraction is always slightly asymmetric. The effect can be exactly reversed by an identical second crystal in the (+,-) arrangement.

Paper Details

Date Published: 20 January 1993
PDF: 9 pages
Proc. SPIE 1740, Optics for High-Brightness Synchrotron Radiation Beamlines, (20 January 1993); doi: 10.1117/12.142565
Show Author Affiliations
Albert T. Macrander, Argonne National Lab. (United States)
Dean R. Haeffner, Argonne National Lab. (United States)
Paul L. Cowan, Argonne National Lab. (United States)

Published in SPIE Proceedings Vol. 1740:
Optics for High-Brightness Synchrotron Radiation Beamlines
John R. Arthur, Editor(s)

© SPIE. Terms of Use
Back to Top