Share Email Print

Proceedings Paper

Adaptive ray casting (ARC) algorithm for simulation of machine vision systems
Author(s): Norman R. Guivens
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical sensor simulations based on high fidelity models of illumination, scenes, cameras, and signal processors can accurately predict the performance of machine vision systems. These simulations typically render images of the scene from solid models that define each object in the sensor's field of view by a ray casting algorithm, then pass the image through models of the camera (receiver) and the signal processor. Conventional ray casting algorithms cast a uniformly spaced grid of rays toward the scene from the camera and add the returns computed for each ray to the appropriate pixel of the image. This paper describes an adaptive ray casting (ARC) algorithm that dynamically adjusts the resolution of the ray grid, within bounds set by the user, to match the level of detail present in each part of the image. The ARC Algorithm generates a resolution map for the scene specifying the resolution required in each pixel, then it dynamically adjusts the spacing of the ray grid to match the required resolution during the rendering process. The resolution map is stored in the same array as the image, allowing the algorithm to run efficiently on systems with limited memory. This ARC Algorithm renders images of very high fidelity without extreme execution times.

Paper Details

Date Published: 23 March 1993
PDF: 12 pages
Proc. SPIE 1822, Optics, Illumination, and Image Sensing for Machine Vision VII, (23 March 1993); doi: 10.1117/12.141934
Show Author Affiliations
Norman R. Guivens, SPARTA, Inc. (United States)

Published in SPIE Proceedings Vol. 1822:
Optics, Illumination, and Image Sensing for Machine Vision VII
Donald J. Svetkoff, Editor(s)

© SPIE. Terms of Use
Back to Top