Share Email Print
cover

Proceedings Paper

Advances in sapphire optical fiber sensors
Author(s): Anbo Wang; George Z. Wang; Sridhar Gollapudi; Russell G. May; Kent A. Murphy; Richard O. Claus
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.

Paper Details

Date Published: 26 March 1993
PDF: 10 pages
Proc. SPIE 1798, Fiber Optic Smart Structures and Skins V, (26 March 1993); doi: 10.1117/12.141335
Show Author Affiliations
Anbo Wang, Virginia Polytechnic Institute and State Univ. (United States)
George Z. Wang, Virginia Polytechnic Institute and State Univ. (United States)
Sridhar Gollapudi, Virginia Polytechnic Institute and State Univ. (United States)
Russell G. May, Virginia Polytechnic Institute and State Univ. (United States)
Kent A. Murphy, Virginia Polytechnic Institute and State Univ. (United States)
Richard O. Claus, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 1798:
Fiber Optic Smart Structures and Skins V
Richard O. Claus; Robert S. Rogowski, Editor(s)

© SPIE. Terms of Use
Back to Top