Share Email Print

Proceedings Paper

Measurements of dynamic linewidth enhancement factor and damping rate for distributed-feedback lasers
Author(s): Shuenn-Jyi Wang; Robert L. Hartman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The dynamic linewidth enhancement factor, (alpha) , and damping rate, (Gamma) , for distributed feedback (DFB) lasers are obtained at various bias levels by measuring the frequency modulation and amplitude modulation indices of the lasers simultaneously. The (alpha) -value of a DFB lasers is generally reduced with increasing output power except at low bias, and the (Gamma) -value typically increases with output power. The measured results show that ninety percent of the 1.3-micrometers capped-mesa buried heterostructure DFB lasers have (alpha) -values in the range 4 to 7 and (Gamma) -values below 4 X 1010 s-1. The 1.3-micrometers lasers have smaller damping rates than the 1.5- micrometers lasers of the same DFB laser structure. Compared with buried heterostructure DFB lasers, multiquantum well (MQW) DFB lasers exhibit a much smaller (alpha) -value and a larger damping rate. For both unstrained and strained 1.5-micrometers MQW-DFB lasers, (alpha) -values as low as 1.5 can be easily realized for these lasers at high output power (>= 10 mW).

Paper Details

Date Published: 16 February 1993
PDF: 12 pages
Proc. SPIE 1788, Sources and Detectors for Fiber Communications, (16 February 1993); doi: 10.1117/12.141098
Show Author Affiliations
Shuenn-Jyi Wang, AT&T Bell Labs. (United States)
Robert L. Hartman, AT&T Bell Labs. (United States)

Published in SPIE Proceedings Vol. 1788:
Sources and Detectors for Fiber Communications
Stephen D. Hersee, Editor(s)

© SPIE. Terms of Use
Back to Top