Share Email Print
cover

Proceedings Paper

Spectral-sliced optical interconnect testbed
Author(s): Charles R. Husbands; Mary M. Girard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the principal limitations in parallel real-time processing systems is the technique used to interconnect processors. Recent research has developed a novel optical transmission architecture to improve processor-to-processor connectivity bandwidth and permit reconfigurability of processor communications. Spectral sliced technology is used in this interconnect architecture to provide processor connectivity using a wavelength division multiple access addressing protocol. Spectral sliced technology employs the broad spectral output characteristics of light emitting diode (LED) sources and the spectral filtering characteristics of multiple channel WDM devices to provide a number of simultaneous non-blocking processor-to-processor connectivity paths. The spectral sliced interconnect technique can also support multicast and broadcast modes which permit one processor to simultaneously transfer data to more than one destination. This paper describes the architecture and provides measured results from an eight node prototype testbed configuration. A parametric study is presented that demonstrates the effects of source wavelength and spectral filter bandwidth on network performance and extent. These studies indicate that networks with high effective throughput rates can be constructed from commercially available off-the-shelf components.

Paper Details

Date Published: 9 February 1993
PDF: 12 pages
Proc. SPIE 1784, High-Speed Fiber Networks and Channels II, (9 February 1993); doi: 10.1117/12.141082
Show Author Affiliations
Charles R. Husbands, MITRE Corp. (United States)
Mary M. Girard, MITRE Corp. (United States)


Published in SPIE Proceedings Vol. 1784:
High-Speed Fiber Networks and Channels II
Kadiresan Annamalai, Editor(s)

© SPIE. Terms of Use
Back to Top