Share Email Print
cover

Proceedings Paper

Optical emissions from oxygen atom reactions with adsorbates
Author(s): David B. Oakes; Mark E. Fraser; Mitzi Gauthier-Beals; Karl W. Holtzclaw; Mark Malonson; Alan H. Gelb
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

Paper Details

Date Published: 18 December 1992
PDF: 12 pages
Proc. SPIE 1754, Optical System Contamination: Effects, Measurement, Control III, (18 December 1992); doi: 10.1117/12.140726
Show Author Affiliations
David B. Oakes, Physical Sciences, Inc. (United States)
Mark E. Fraser, Physical Sciences, Inc. (United States)
Mitzi Gauthier-Beals, Physical Sciences, Inc. (United States)
Karl W. Holtzclaw, Physical Sciences, Inc. (United States)
Mark Malonson, Physical Sciences, Inc. (United States)
Alan H. Gelb, Physical Sciences, Inc. (United States)


Published in SPIE Proceedings Vol. 1754:
Optical System Contamination: Effects, Measurement, Control III
A. Peter M. Glassford, Editor(s)

© SPIE. Terms of Use
Back to Top