Share Email Print
cover

Proceedings Paper

Neural networks for vertical microcode compaction
Author(s): Pong P. Chu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

Paper Details

Date Published: 16 September 1992
PDF: 9 pages
Proc. SPIE 1709, Applications of Artificial Neural Networks III, (16 September 1992); doi: 10.1117/12.139968
Show Author Affiliations
Pong P. Chu, Cleveland State Univ. (United States)


Published in SPIE Proceedings Vol. 1709:
Applications of Artificial Neural Networks III
Steven K. Rogers, Editor(s)

© SPIE. Terms of Use
Back to Top