Share Email Print

Proceedings Paper

Theory of the amplitude-phase retrieval in any linear-transform system and its applications
Author(s): Guozhen Yang; Ben-Yuan Gu; Bi-Zhen Dong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

Paper Details

Date Published: 29 December 1992
PDF: 22 pages
Proc. SPIE 1767, Inverse Problems in Scattering and Imaging, (29 December 1992); doi: 10.1117/12.139042
Show Author Affiliations
Guozhen Yang, Institute of Physics (China)
Ben-Yuan Gu, Institute of Physics (China)
Bi-Zhen Dong, Institute of Physics (China)

Published in SPIE Proceedings Vol. 1767:
Inverse Problems in Scattering and Imaging
Michael A. Fiddy, Editor(s)

© SPIE. Terms of Use
Back to Top