Share Email Print

Proceedings Paper

Optical design of a new photodiode-array absorbance detector for high-performance liquid chromatography
Author(s): Anthony C. Gilby; Michael J. Leveille
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new HPLC absorbance detector, the Waters Model 996 is described. It covers the spectral range 190 to 800 nm with a nominal resolution of 1.2 nm, equivalent to one diode element. It is based on a deuterium arc source, a 512 element, self-scanned, photodiode array detector and a flat-field, aberration-corrected, concave holographic grating. A design approach is described which establishes the best cell geometry to minimize the concentration limit of detection through fully exploiting the performance potential of the key components. Sensitivity to flow stream artifacts, such as refractive index changes during gradient elution and pump- induced compositional ripple or thermal pulsations, are minimized in the optical design through the use of a 'reversed taper beam'. Source output is stabilized using a separate photodetector. After outlining the original objectives and the restrictions which they place on the design, we describe the optical system. Next we explain the logic behind the design, and end with representative performance data.

Paper Details

Date Published: 14 August 1992
PDF: 13 pages
Proc. SPIE 1681, Optically Based Methods for Process Analysis, (14 August 1992); doi: 10.1117/12.137760
Show Author Affiliations
Anthony C. Gilby, Millipore Corp. (United States)
Michael J. Leveille, Millipore Corp. (United States)

Published in SPIE Proceedings Vol. 1681:
Optically Based Methods for Process Analysis
David S. Bomse; Harry Brittain; Stuart Farquharson; Jeremy M. Lerner; Alan J. Rein; Cary Sohl; Terry R. Todd; Lois Weyer, Editor(s)

© SPIE. Terms of Use
Back to Top