Share Email Print
cover

Proceedings Paper

Relationship between hovering depth and viewing position
Author(s): Chang-Ming Sun; Andrew K. Forrest
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Random-dot stereograms first generated by Julesz have since been much used for research in vision and perception. When stereograms are binocularly viewed, three-dimensional surfaces can be perceived hovering over the random-dot background. It can be observed that when the viewing distance alters, the hovering depth of the surface also changes and that if we move our eyes to and fro sideways while viewing, the hovering surface moves with our eye movement. It is believed that the information about depth and three-dimensional shape available from the horizontal component of the stereo disparity field requires interpretation in conjunction with information about egocentric viewing distance. This paper shows the relationship between hovering depth and viewing position. The hovering depth can be calculated providing the interocular distance, the convergence angle and the disparity are known. The ratio of the hovering depths at two different viewing positions is equal to the ratio of the corresponding viewing distances. A mathematical explanation is given of the fact that changing viewing position results in changing of the perceived depth of the hovering surface in stereograms. The horizontal shift of the hovering surface has a linear relationship with the amount of eye movement, and the ratio between them is determined by a the disparity and the interocular distance.

Paper Details

Date Published: 27 August 1992
PDF: 8 pages
Proc. SPIE 1666, Human Vision, Visual Processing, and Digital Display III, (27 August 1992); doi: 10.1117/12.135994
Show Author Affiliations
Chang-Ming Sun, Imperial College of Science, Technology and Medicine (United Kingdom)
Andrew K. Forrest, Imperial College of Science, Technology and Medicine (United Kingdom)


Published in SPIE Proceedings Vol. 1666:
Human Vision, Visual Processing, and Digital Display III
Bernice E. Rogowitz, Editor(s)

© SPIE. Terms of Use
Back to Top