Share Email Print
cover

Proceedings Paper

HDTV camera using digital contour
Author(s): Tadashi Sugiki; Akria Nakao; Tomoyuki Uchida
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The authers have developed the HSC-100 solid-state High-Definition TV(Camera. The canra promises a 6dB S/N and +6dB sensilivity far superior to conventional IIDTV cameras due to an imaging device construction. It also improves picture quality throughusing a digital contour unit. To satisfy IiDTV (SMPTE 240M) requirements a photo-conductive layered semiconductor imaging device (PSID) with 2 pixels has been developed. An amorphous silicon (a-Si) layeris added to the CCD scanner in this device. The a-Si layer carries out photoelectric conversion then interline transfer CCD reads out the photo induced electric charges. This configuraon provides a pixel aperture ratio of 100 thereby improving sensitivity comparedwith existing models. The layer structure also permits a wide dynamic range. A digital contour unit was developed to improve contour corrector characteristics. S/N and frequency response are improved by introducing digital signal processing. The 56dB S/N value is achieved with an 8 bit A/D converter. This S/N is about 10 dB better than that for conventional ultra-sonic delay lines. In addilion digital processing improves frequency response and delay time stability. A more natural contour correction characteristic has been attained with a contour correction signal derived from the luminance signal. 1.

Paper Details

Date Published: 12 August 1992
PDF: 7 pages
Proc. SPIE 1656, High-Resolution Sensors and Hybrid Systems, (12 August 1992); doi: 10.1117/12.135893
Show Author Affiliations
Tadashi Sugiki, Toshiba Corporation (Japan)
Akria Nakao, Toshiba Corporation (Japan)
Tomoyuki Uchida, Toshiba Corporation (Japan)


Published in SPIE Proceedings Vol. 1656:
High-Resolution Sensors and Hybrid Systems
Morley M. Blouke; Winchyi Chang; Laurence J. Thorpe; Rajinder P. Khosla, Editor(s)

© SPIE. Terms of Use
Back to Top