Share Email Print
cover

Proceedings Paper

Single instruction computer architecture and its application in image processing
Author(s): Phillip A. Laplante
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A single processing computer system using only half-adder circuits is described. In addition, it is shown that only a single hard-wired instruction is needed in the control unit to obtain a complete instruction set for this general purpose computer. Such a system has several advantages. First it is intrinsically a RISC machine--in fact the 'ultimate RISC' machine. Second, because only a single type of logic element is employed the entire computer system can be easily realized on a single, highly integrated chip. Finally, due to the homogeneous nature of the computer's logic elements, the computer has possible implementations as an optical or chemical machine. This in turn suggests possible paradigms for neural computing and artificial intelligence. After showing how we can implement a full-adder, min, max and other operations using the half-adder, we use an array of such full-adders to implement the dilation operation for two black and white images. Next we implement the erosion operation of two black and white images using a relative complement function and the properties of erosion and dilation. This approach was inspired by papers by van der Poel in which a single instruction is used to furnish a complete set of general purpose instructions and by Bohm- Jacopini where it is shown that any problem can be solved using a Turing machine with one entry and one exit.

Paper Details

Date Published: 1 March 1992
PDF: 10 pages
Proc. SPIE 1608, Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods, (1 March 1992); doi: 10.1117/12.135127
Show Author Affiliations
Phillip A. Laplante, Fairleigh Dickinson Univ. (United States)


Published in SPIE Proceedings Vol. 1608:
Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top