Share Email Print
cover

Proceedings Paper

Parallel fault-tolerant robot control
Author(s): Deirdre L. Hamilton; John K. Bennett; Ian David Walker
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Most robot controllers today employ a single processor architecture. As robot control requirements become more complex, these serial controllers have difficulty providing the desired response time. Additionally, with robots being used in environments that are hazardous or inaccessible to humans, fault-tolerant robotic systems are particularly desirable. A uniprocessor control architecture cannot offer tolerance of processor faults. Use of multiple processors for robot control offers two advantages over single processor systems. Parallel control provides a faster response, which in turn allows a finer granularity of control. Processor fault tolerance is also made possible by the existence of multiple processors. There is a trade-off between performance and the level of fault tolerance provided. This paper describes a shared memory multiprocessor robot controller that is capable of providing high performance and processor fault tolerance. We evaluate the performance of this controller, and demonstrate how performance and processor fault tolerance can be balanced in a cost- effective manner.

Paper Details

Date Published: 1 November 1992
PDF: 11 pages
Proc. SPIE 1829, Cooperative Intelligent Robotics in Space III, (1 November 1992); doi: 10.1117/12.131703
Show Author Affiliations
Deirdre L. Hamilton, Rice Univ. (United States)
John K. Bennett, Rice Univ. (United States)
Ian David Walker, Rice Univ. (United States)


Published in SPIE Proceedings Vol. 1829:
Cooperative Intelligent Robotics in Space III
Jon D. Erickson, Editor(s)

© SPIE. Terms of Use
Back to Top