Share Email Print

Proceedings Paper

Subaperture testing of a large flat mirror
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A variation of the Ritchey-Common configuration was applied to the subaperture testing of a 29-in diameter flat at about 65 degrees oblique incidence in the 12-in collimated beam of a Fizeau interferometer, yielding an elliptical beam footprint spanning the full diameter of the mirror under test. A set of subaperture samples was built up in a 'flower petal' pattern symmetric about the mirror center by in-plane rotation of the mirror in 30-degree increments. A key advantage of this method of sampling over raster methods is that the synthesis of the full surface map is greatly simplified by not having to keep track of individual piston and tilt terms because of the symmetry. An advantage over the Ritchey-Common configuration is that the cavity length can be made much shorter, thus greatly reducing atmospheric effects. The data reduction and surface synthesis processes simply consisted of fitting Zernike polynomial expansions to the (digitized) individual interferograms, subtracting the piston and tilt terms, then applying rotation and scaling transformations to the pupil coordinate grid to map the (circular) pupil surface data into the appropriate elliptical footprints.

Paper Details

Date Published: 10 December 1992
PDF: 5 pages
Proc. SPIE 1752, Current Developments in Optical Design and Optical Engineering II, (10 December 1992); doi: 10.1117/12.130723
Show Author Affiliations
Theodore S. Turner Jr., S. Systems Corp. (United States)

Published in SPIE Proceedings Vol. 1752:
Current Developments in Optical Design and Optical Engineering II
Robert E. Fischer; Warren J. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top