Share Email Print
cover

Proceedings Paper

Bulk and surface light scattering from transparent silica aerogel
Author(s): Werner J. Platzer; Mikael Bergkvist
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Elastic light scattering has been used to study structural properties of different transparent aerogels, which may be used as filling materials in super-windows. With a goniometer having an angular resolution better than 0.6 degree(s) and a He-Ne laser as the light source we investigated the angular distribution of scattered intensity from transparent silica aerogels and one xerogel. The densities ranged between 0.11 and 0.60 gcm-3. An exponential correlation function for the density fluctuations of a random porous medium has been utilized to analyze the large-angle scattering, which is dominated by bulk scattering, for different polarization of the incident light. The determination of correlation lengths in the nanometer range was possible, because the absolute scattering intensities were determined. For relative angular dependence measurements, this range would have been accessible only to small angle x-ray scattering (SAXS). The resulting mean pore sizes between 8 nm and 50 nm and specific surface areas between 500 and 700 m2/g agree well with nitrogen-porosimetry data from the literature. The data compare quite well with correlation lengths calculated from specular transmittance data from an ordinary spectrophotometer. This method, which is not sensitive to the angular distribution of superposed forward scattering with large correlation lengths, has also been applied to a series of base-catalyzed TMOS aerogels with different catalyst concentrations. The forward scattering peak of the signal may be attributed to correlation lengths in the micrometer range. Experimental results for aerogel surfaces with evaporated aluminum indicate that this might be due to the surface properties. A quantitative analysis, however, is not possible yet.

Paper Details

Date Published: 25 November 1992
PDF: 9 pages
Proc. SPIE 1727, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Materials, Concentrators and Reflectors, Transparent Insulation and Superwindows, (25 November 1992); doi: 10.1117/12.130519
Show Author Affiliations
Werner J. Platzer, Fraunhofer-Institut fuer Solare Energiesysteme (Germany)
Mikael Bergkvist, Univ. Uppsala (Sweden)


Published in SPIE Proceedings Vol. 1727:
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Materials, Concentrators and Reflectors, Transparent Insulation and Superwindows

© SPIE. Terms of Use
Back to Top