Share Email Print
cover

Proceedings Paper

Combined optics for concentration and light trapping in photovoltaics
Author(s): Philip A. Davies; Juan Carlos Minano
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Light trapping by means of external cavities theoretically offers the same potential to improve the efficiency of solar converters as does concentration. The ideal efficiency of 86% could be reached by any combination of concentration and light trapping, provided all the etendue of the cell is coupled either to itself (giving light trapping) or to the sun (giving concentration). But with real solar cells, there are optimum conditions of concentration and light trapping which maximize the efficiency. The possibility of achieving these conditions is compared between two optical systems: (1) axisymmetric Fresnel lens with plane upper surface, and ellipsoidal cavity, (2) similar Fresnel lens plus secondary lens using total internal reflections to trap light. With regard to a deep-emitter cell, of moderate technology, either system can attain near optimum conditions, giving an efficiency about 4% points above 1-sun efficiency. With a more speculative cell model assuming back mirroring and cell thinning to reduce series resistance, the maximum efficiency (predicted 8% points above 1-sun efficiency) cannot be obtained due to limitations of the optical system, and about 5% points above 1-sun efficiency appears feasible.

Paper Details

Date Published: 25 November 1992
PDF: 12 pages
Proc. SPIE 1727, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Materials, Concentrators and Reflectors, Transparent Insulation and Superwindows, (25 November 1992); doi: 10.1117/12.130513
Show Author Affiliations
Philip A. Davies, Univ. Politecnica de Madrid (United Kingdom)
Juan Carlos Minano, Univ. Politecnica de Madrid (Spain)


Published in SPIE Proceedings Vol. 1727:
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Materials, Concentrators and Reflectors, Transparent Insulation and Superwindows

© SPIE. Terms of Use
Back to Top