Share Email Print

Proceedings Paper

Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup
Author(s): Sven Meissner; Ralph Breithaupt; Edmund Koch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

Paper Details

Date Published: 15 March 2013
PDF: 4 pages
Proc. SPIE 8611, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIII, 86110L (15 March 2013); doi: 10.1117/12.1000089
Show Author Affiliations
Sven Meissner, Technische Univ. Dresden (Germany)
Ralph Breithaupt, Bundesamt für Sicherheit in der Informationstechnik (Germany)
Edmund Koch, Technische Univ. Dresden (Germany)

Published in SPIE Proceedings Vol. 8611:
Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIII
Alexander Heisterkamp; Peter R. Herman; Michel Meunier; Stefan Nolte, Editor(s)

© SPIE. Terms of Use
Back to Top