Share Email Print

Optical Engineering

Digital optical computing with optically switched directional couplers
Author(s): Alan F. Benner; Harry F. Jordan; Vincent P. Heuring
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optically switchable directional couplers can function as logically complete building blocks for constructing all-optical computational engines. Logically, such devices operate as all-optical five-terminal gates, where the two output signals are logical functions of two throughgoing input signals and a control input signal. Such an optically controlled exchange element is a promising functional unit for constructing general-purpose digital optical logic circuits. The implementation of such all-optical five-terminal gates using Ti:LiNbO3 electro-optic directional couplers is described. These optical logic gates utilize mature technology developed for the telecommunications industry, facilitating construction of robust optical logic hardware. Single-mode optical fiber is used for all logical interconnections. Effectively dc-coupled control circuitry converts optical pulses into electrical pulses capable of switching the transfer state of low-voltage lumped electrode directional couplers. The use of such Ti:LiNbO3 five-terminal optical logical gates in the construction of various simple circuits such as oscillators and divide-by-N circuits is shown. Such circuits demonstrate many of the issues arising in the construction of all- optical digital computing systems, and are fundamental subsections of an all-optical bit serial computer design currently under construction.

Paper Details

Date Published: 1 December 1991
PDF: 6 pages
Opt. Eng. 30(12) doi: 10.1117/12.56031
Published in: Optical Engineering Volume 30, Issue 12
Show Author Affiliations
Alan F. Benner, Univ. of Colorado/Boulder (United States)
Harry F. Jordan, Univ. of Colorado/Boulder (United States)
Vincent P. Heuring, Univ. of Colorado/Boulder (United States)

© SPIE. Terms of Use
Back to Top