Share Email Print

Optical Engineering

Image reconstruction using projection onto convex sets, model constraints, and linear prediction theory for the removal of phase, motion, and Gibbs artifacts in magnetic resonance and ultrasound imaging
Author(s): E. Mark Haacke; Zhi-Pei Liang; Fernando E. Boada
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Fourier transform is the standard image reconstruction technique used in magnetic resonance imaging (MRI), and it is an integral part of the inverse scattering formalism in ultrasound (US) imaging. Unfortunately, artifacts such as Gibbs ringing induced by a finite sampling window or systematic errors in phase may significantly impede the interpretation of the resulting Fourier transform images. Further, when only a few parameters are needed to characterize the object function, it is likely not to be the best technique for optimal signal-to-noise. In this paper, the application of a parameter estimation reconstruction scheme using a priori constraints to remove Gibbs ringing and improve resolution and signalto- noise is presented for MRI and US. Projection onto convex set theory is also used to regenerate uncollected data in partial Fourier imaging, and model constraints are used to correct motion artifacts in MRI. These methods are found not to require unrealistic values of the signal-to-noise ratio and are likely to prove practical in future applications.

Paper Details

Date Published: 1 May 1990
PDF: 12 pages
Opt. Eng. 29(5) doi: 10.1117/12.55624
Published in: Optical Engineering Volume 29, Issue 5
Show Author Affiliations
E. Mark Haacke, Case Western Reserve Univ. (United States)
Zhi-Pei Liang, Univ. of Illinois (United States)
Fernando E. Boada, Case Western Reserve Univ. (United States)

© SPIE. Terms of Use
Back to Top