Share Email Print

Optical Engineering

Mathematics of adaptive wavelet transforms: relating continuous with discrete transforms
Author(s): Harold H. Szu; Brian A. Telfer
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We prove several theorems and construct explicitly the bridge between the continuous and discrete adaptive wavelet transform (AWT). The computational efficiency of the AWT is a result of its compact support closely matching linearly the signal's time-frequency characteristics, and is also a result of a larger redundancy factor of the superposition-mother s(x) (super-mother), created adaptively by a linear superposition of other admissible mother wavelets. The super-mother always forms a complete basis, but is usually associated with a higher redundancy number than its constituent complete orthonormal (CON) bases. The robustness of super-mother suffers less noise contamination (since noise is everywhere, and a redundant sampling by bandpassings can suppress the noise and enhance the signal). Since the continuous super-mother has been created off-line by AWT (using least-mean-squares neural nets), we wish to accomplish fast AWT on line. Thus, we formulate AWT in discrete high-pass (H) and low-pass (L) filter bank coefficients via the quadrature mirror filter (QMF), a digital subband lossless coding. A linear combination of two special cases of the complete biorthogonal normalized (Cbi-ON) QMF [L(z),H(z),L+(z),H+(z)], called α-bank and β-bank, becomes a hybrid aα + bβ-bank (for any real positive constants a and b) that is still admissible, meaning Cbi-ON and lossless. Finally, the power of AWT is the implementation by means of wavelet chips and neurochips, in which each node is a daughter wavelet similar to a radial basis function using dyadic affine scaling.

Paper Details

Date Published: 1 July 1994
PDF: 14 pages
Opt. Eng. 33(7) doi: 10.1117/12.173205
Published in: Optical Engineering Volume 33, Issue 7
Show Author Affiliations
Harold H. Szu, Naval Surface Warfare Ctr. (United States)
Brian A. Telfer, Naval Surface Warfare Ctr. (United States)

© SPIE. Terms of Use
Back to Top