Share Email Print

Optical Engineering

Photovoltaic lead-chalcogenide on silicon infrared sensor arrays
Author(s): Hans Zogg; Alexander Fach; Clau Maissen; Jiri Masek; Stefan Blunier
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

MBE growth and infrared device fabrication with epitaxial IV-VI layers on Si substrates are reviewed. Epitaxy on Si substrates is achieved using a stacked BaF2/CaF2 or CaF2 buffer layer. With buffers containing no BaF2, standard photolithographic delineation with wet-etching techniques can be used. Photovoltaic IV-VI sensors with cutoff wavelengths ranging from 3 to 14 μm are fabricated in PbS, PbSe1-xSx, PbEu1-xSex, PbTe, or Pb1-xSnxSe layers on Si (111) substrates. They offer the possibility for low-cost infrared focal plane arrays with sensitivities similar to Hg1-xCdxTe, but with much less demanding material processing steps. A 13-mm-long linear array with 10.5-μm cutoff wavelength has inhomogeneities in cutoff below 0.1 μm. Some arrays were grown on prefabricated active Si substrates containing the whole readout circuits. First thermal images using these chips are demonstrated. The induced mechanical strain resulting from the different thermal expansion of IV-VIs and Si relaxes down to cryogenic temperatures even after many temperature cycles because of dislocation glide in the main {100} glide planes.

Paper Details

Date Published: 1 May 1994
PDF: 10 pages
Opt. Eng. 33(5) doi: 10.1117/12.165808
Published in: Optical Engineering Volume 33, Issue 5
Show Author Affiliations
Hans Zogg, Swiss Federal Institute of Technology (Switzerland)
Alexander Fach, Swiss Federal Institute of Technology (Switzerland)
Clau Maissen, Swiss Federal Inst. of Technology (Switzerland)
Jiri Masek, Swiss Federal Institute of Technology (Switzerland)
Stefan Blunier, Swiss Federal Institute of Technology (Switzerland)

© SPIE. Terms of Use
Back to Top