Share Email Print

Journal of Electronic Imaging

Natural shape detection based on principal component analysis
Author(s): Ashok Samal; Prasana A. Iyengar
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The classical Hough transform, the generalized Hough transforms, and their extensions are quite robust for detection of a large class of objects that can be categorized as industrial parts. These objects are rigid and have fixed shapes, i.e., different instances of the same object are more or less identical. These techniques, and indeed most current techniques, however, do not adequately handle shapes that are more flexible. These shapes are widely found in nature and are characterized by the fact that different instances of the same shape are similar, but not identical, e.g., leaves and flowers. We present a new technique to recognize natural shapes, based on principal component analysis. A set of basis shapes are obtained using principal component analysis. A Hough-like technique is used to detect the basis shapes. The results are then combined to locate the shape in the image. Experimental results show that the approach is robust, accurate, and fast.

Paper Details

Date Published: 1 July 1993
PDF: 11 pages
J. Electron. Imaging. 2(3) doi: 10.1117/12.148220
Published in: Journal of Electronic Imaging Volume 2, Issue 3
Show Author Affiliations
Ashok Samal, Univ. of Nebraska/Lincoln (United States)
Prasana A. Iyengar, Univ. of Nebraska-Lincoln (United States)

© SPIE. Terms of Use
Back to Top