Share Email Print

Optical Engineering • new

Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR
Author(s): Chengjin Xu; Junjun Guan; Ming Bao; Jiangang Lu; Wei Ye
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.

Paper Details

Date Published: 3 January 2018
PDF: 7 pages
Opt. Eng. 57(1) 016103 doi: 10.1117/1.OE.57.1.016103
Published in: Optical Engineering Volume 57, Issue 1
Show Author Affiliations
Chengjin Xu, Zhejiang Univ. (China)
Junjun Guan, Institute of Acoustics (China)
Ming Bao, Institute of Acoustics (China)
Jiangang Lu, Zhejiang Univ. (China)
Wei Ye, Zhejiang Univ. (China)

© SPIE. Terms of Use
Back to Top