Share Email Print
cover

Optical Engineering

Long-distance quantum key distribution using concatenated entanglement swapping with practical resources
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We explain how to share photons between two distant parties using concatenated entanglement swapping and assess performance according to the two-photon visibility as the figure of merit. From this analysis, we readily see the key generation rate and the quantum bit error rate as figures of merit for this scheme applied to quantum key distribution (QKD). Our model accounts for practical limitations, including higher-order photon pair events, dark counts, detector inefficiency, and photon losses. Our analysis shows that compromises are needed among the runtimes for the experiment, the rate of producing photon pairs, and the choice of detector efficiency. From our quantitative results, we observe that concatenated entanglement swapping enables secure QKD over long distances but at key generation rates that are far too low to be useful for large separations. We find that the key generation rates are close to both the Takeoka–Guha–Wilde and the Pirandola–Laurenza–Ottaviani–Banchi bounds.

Paper Details

Date Published: 25 January 2017
PDF: 7 pages
Opt. Eng. 56(1) 016114 doi: 10.1117/1.OE.56.1.016114
Published in: Optical Engineering Volume 56, Issue 1
Show Author Affiliations
Aeysha Khalique, National Univ. of Sciences and Technology (Pakistan)
Univ. of Science and Technology of China (China)
Barry C. Sanders, Univ. of Science and Technology of China (China)
Univ. of Calgary (Canada)
(China)


© SPIE. Terms of Use
Back to Top