
Optical Engineering
Two approaches for realizing traceability in nanoscale dimensional metrologyFormat | Member Price | Non-Member Price |
---|---|---|
$20.00 | $25.00 |
![]() |
GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. | Check Access |
Paper Abstract
Traceability is a fundamental issue for nanoscale dimensional metrology. The lack of traceability in measurements inhibits the comparison of tools from different manufacturers and limits knowledge about the real size of fabricated features. Two approaches for realizing traceability in nanometrology, referred to as a top-down approach and a bottom-up approach, are presented. Following the top-down approach, for instance, realized using metrological atomic force microscopes, the dimension of nanostructures is derived from the displacement of the scanner, which is directly measured by laser interferometers whose optical frequency is calibrated to an iodine frequency-stabilized laser. Thus, the measurement result is directly traceable with an unbroken chain to the International System of Units—the meter. However, to achieve subnanometer measurement accuracy, which is far smaller than the optical wavelength (632.8 nm in this study), the subdivision of the interference fringe is essential for obtaining desired measurement resolution and accuracy. On the contrary, with the bottom-up approach, the dimension of nanostructures is determined using the silicon crystal lattice as an internal ruler. Due to the small dimension of the crystal lattice constant (e.g., d111=0.313 nm), the bottom-up approach offers measurements with potential highest accuracy. The crystal lattice constant can be traceably calibrated to the meter by, e.g., a combined optical and x-ray interferometer; thus, the traceability of the bottom-up approach is also ensured. The consistency of the two approaches is experimentally confirmed in this paper.
Paper Details
Date Published: 30 March 2016
PDF: 7 pages
Opt. Eng. 55(9) 091407 doi: 10.1117/1.OE.55.9.091407
Published in: Optical Engineering Volume 55, Issue 9
PDF: 7 pages
Opt. Eng. 55(9) 091407 doi: 10.1117/1.OE.55.9.091407
Published in: Optical Engineering Volume 55, Issue 9
Show Author Affiliations
Gaoliang Dai, Physikalisch-Technische Bundesanstalt (Germany)
Ludger Koenders, Physikalisch-Technische Bundesanstalt (Germany)
Ludger Koenders, Physikalisch-Technische Bundesanstalt (Germany)
Jens Flügge, Physikalisch-Technische Bundesanstalt (Germany)
Harald Bosse, Physikalisch-Technische Bundesanstalt (Germany)
Harald Bosse, Physikalisch-Technische Bundesanstalt (Germany)
© SPIE. Terms of Use
