Share Email Print

Optical Engineering

Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials
Author(s): Jesús N. Eiras; Tribikram Kundu; John S. Popovics; José M. Monzó; María Victoria Borrachero; Jordi Payá
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160  mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and <95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.

Paper Details

Date Published: 19 August 2015
PDF: 7 pages
Opt. Eng. 55(1) 011004 doi: 10.1117/1.OE.55.1.011004
Published in: Optical Engineering Volume 55, Issue 1
Show Author Affiliations
Jesús N. Eiras, Univ. Politècnica de València (Spain)
Tribikram Kundu, The Univ. of Arizona (United States)
John S. Popovics, Univ. of Illinois at Urbana-Champaign (United States)
José M. Monzó, Univ. Politècnica de València (Spain)
María Victoria Borrachero, Univ. Politècnica de València (Spain)
Jordi Payá, Univ. Politècnica de València (Spain)

© SPIE. Terms of Use
Back to Top