Share Email Print

Optical Engineering

Numerical laser beam propagation using large eddy simulation of a jet engine flow field
Author(s): Markus Henriksson; Lars J. Sjöqvist; Oskar Parmhed; Christer Fureby
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In certain directed infrared countermeasure (DIRCM) situations, the laser beam path may have to pass close to the engine exhaust plume of the aircraft and models of plume turbulence are needed for DIRCM performance simulations. The jet engine plume was modeled using large eddy simulation (LES), providing time resolved information about the large scale turbulent eddies. The refractive index data from the LES calculations were integrated along the propagation path to produce time resolved phase screens for optical beam propagation. The phase screens were used to calculate laser beam parameters including beam wander and power-in-bucket (PIB). Numerical beam propagation resulted in a root-mean-square beam wander of 200  μrad for the small turbojet engine studied. The PIB was calculated for beams with 80 μrad and 2 mrad divergence having equal beam diameter when passing through the plume. For the beam with low divergence, the average PIB was reduced from 0.23 to 0.040, while the beam with wider divergence showed no significant reduction. In both cases, the plume introduced significant temporal variation of the instantaneous PIB. The beam wander is not affected by the divergence, but only depends on beam size.

Paper Details

Date Published: 5 August 2015
PDF: 10 pages
Opt. Eng. 54(8) 085101 doi: 10.1117/1.OE.54.8.085101
Published in: Optical Engineering Volume 54, Issue 8
Show Author Affiliations
Markus Henriksson, FOI-Swedish Defence Research Agency (Sweden)
Lars J. Sjöqvist, FOI-Swedish Defence Research Agency (Sweden)
Oskar Parmhed, FOI-Swedish Defence Research Agency (Sweden)
Christer Fureby, FOI-Swedish Defence Research Agency (Sweden)

© SPIE. Terms of Use
Back to Top