Share Email Print

Optical Engineering

Feature extraction of partial discharge gray-scale images for identification based on multifractal spectrum using fluorescence fiber sensor
Author(s): Ju Tang; Liang Huang
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This document proposes the utilization of partial discharge (PD) optical signals from a fluorescence optical sensor system for constructing φ-u-n charts and gray-scale images. The fractal characteristics cannot fully characterize the PD gray-scale images, which reduce the PD pattern recognition rates. Multifractal spectrum is used for analyzing the characteristics of gray-scale images, and a new probability calculation method is proposed for computing the multifractal spectrogram of these images. By conducting a series of experiments, the multifractal spectrum is proven effective in describing the variations in the geometric characteristics of the gray-scale images. The main physical features of the multifractal spectrum are extracted and used as pattern recognition features. The backpropagation neural network with an improved conjugate gradient algorithm is used as a classifier in identifying the different PD types, which achieves recognition rates that are <87% . The multifractal spectrum improves the accuracy of the PD pattern recognition unlike other pattern recognition features, such as the box-counting dimension and the information dimension.

Paper Details

Date Published: 5 May 2014
PDF: 8 pages
Opt. Eng. 53(5) 053102 doi: 10.1117/1.OE.53.5.053102
Published in: Optical Engineering Volume 53, Issue 5
Show Author Affiliations
Ju Tang, Chongqing Univ. (China)
Liang Huang, Chongqing Univ. (China)

© SPIE. Terms of Use
Back to Top