Share Email Print
cover

Optical Engineering

Dynamic bandwidth allocation algorithm for next-generation time division multiplexing passive optical networks with network coding
Author(s): Pei Wei; Rentao Gu; Yuefeng Ji
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

An efficient dynamic bandwidth allocation (DBA) algorithm for multiclass services called MSDBA is proposed for next-generation time division multiplexing (TDM) passive optical networks with network coding (NC-PON). In MSDBA, a DBA cycle is divided into two subcycles with different coding strategies for differentiated classes of services, and the transmission time of the first subcycle overlaps with the bandwidth allocation calculation time at the optical line terminal. Moreover, according to the quality-of-service (QoS) requirements of services, different scheduling and bandwidth allocation schemes are applied to coded or uncoded services in the corresponding subcycle. Numerical analyses and simulations for performance evaluation are performed in 10 Gbps ethernet passive optical networks (10G EPON), which is a standardized solution for next-generation EPON. Evaluation results show that compared with the existing two DBA algorithms deployed in TDM NC-PON, MSDBA not only demonstrates better performance in delay and QoS support for all classes of services but also achieves the maximum end-to-end delay fairness between coded and uncoded lower-class services and guarantees the end-to-end delay bound and fixed polling order of high-class services by sacrificing their end-to-end delay fairness for compromise.

Paper Details

Date Published: 8 August 2013
PDF: 13 pages
Opt. Eng. 52(8) 086108 doi: 10.1117/1.OE.52.8.086108
Published in: Optical Engineering Volume 52, Issue 8
Show Author Affiliations
Pei Wei, Beijing Univ. of Posts and Telecommunications (China)
Rentao Gu, Beijing Univ. of Posts and Telecommunications (China)
Yuefeng Ji, Beijing Univ. of Posts and Telecommunications (China)


© SPIE. Terms of Use
Back to Top