Share Email Print

Optical Engineering

Dynamic range and sensitivity improvement in near-infrared detectors using silicon germanium bipolar complementary metal-oxide semiconductor technology
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Classically gated infrared (IR) detectors have been implemented using charge-coupled devices (CCD). Bipolar complementary metal-oxide semiconductor (BiCMOS) technology emerged as a viable alternative platform for development. BiCMOS technology has a number of advantages over CCD and conventional CMOS technology, of which increased switching speed is one. The pixel topology used in this work is a reversed-biased diode connected heterojunction bipolar transistor. The disadvantage of CMOS detectors is the increased readout noise due to the increased on-chip switching compared to CCD, which degrades dynamic range (DR) and sensitivity. This yields increased switching speeds compared to conventional bipolar junction transistors. Sensitivity improved from 50  mA/W (peak) at 430 nm in CCD detectors to 180  mA/W (peak) (or 180,000  V/W ) at 665 nm in BiCMOS detectors. Other CMOS IR detectors previously published in the literature showed sensitivity values from 2750 to 5000  V/W or 100  mA/W . The DR also improved from 47 and 53 dB to 70 dB. The sensitivity of conventional CCD detectors previously published is around 53  mA/W . The second advantage is that detection in the near-IR band with conventional silicon integrated technology is possible. This work has shown increased detection capabilities up to 1.1 μm compared to Si detectors.

Paper Details

Date Published: 3 April 2013
PDF: 6 pages
Opt. Eng. 52(4) 044001 doi: 10.1117/1.OE.52.4.044001
Published in: Optical Engineering Volume 52, Issue 4
Show Author Affiliations
Johan Venter, Univ. of Pretoria (South Africa)
Saurabh Sinha, Univ. of Pretoria (South Africa)

© SPIE. Terms of Use
Back to Top