Share Email Print

Optical Engineering • Open Access

Design of a high sensitivity emitter-detector avalanche photodiode imager using very high transmittance, back-illuminated, silicon-on-sapphire
Author(s): Alvin G. Stern

Paper Abstract

We present a detailed design study for a novel solid-state focal plane array of silicon avalanche photodiodes (APDs) using an advanced silicon-on-sapphire substrate incorporating an antireflective bilayer consisting of crystalline aluminum nitride (AlN) and amorphous, non-stoichiometric, silicon rich, silicon nitride (a-SiNX<1.33) between the silicon and sapphire. The substrate supports electrical and optical integration of a nearly 100% quantum efficiency, silicon APD capable of operating with wide dynamic range in dual linear or Geiger-mode, with a gallium nitride (GaN) laser diode in each pixel. The APD device and epitaxially grown GaN laser are fabricated within a crystallographically etched silicon mesa. The high resolution 27 μm emitter-detector pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs), with passive and active imaging capability in a single FPA. The square 27 μm emitter-detector pixel achieves SNR>10 in active detection mode for Lambert surfaces at 20,000 m.

Paper Details

Date Published: 13 June 2012
PDF: 22 pages
Opt. Eng. 51(6) 063206 doi: 10.1117/1.OE.51.6.063206
Published in: Optical Engineering Volume 51, Issue 6
Show Author Affiliations
Alvin G. Stern, AG Stern, LLC (United States)

© SPIE. Terms of Use
Back to Top