Share Email Print
cover

Optical Engineering

Residual misregistration noise estimation in hyperspectral anomalous change detection
Author(s): Nicola Acito; Salvatore Resta; Marco Diani; Giovanni Corsini
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

We propose a novel method to estimate the first- and second-order statistics of the residual misregistration noise (RMR), which severely affects the performance of anomalous change detection techniques. Depending on the specific distribution of the RMR, the estimates allow for precisely defining the size of the uncertainty window, which is crucial when dealing with misregistration noise, as in the local coregistration adjustment approach. The technique is based on a sequential strategy that exploits the well-known scale-invariant feature transform (SIFT) algorithm cascaded with the minimum covariance determinant algorithm. The SIFT procedure was originally developed to work on gray-level images. The proposed method adapts the SIFT procedure to hyperspectral images so as to exploit the complementary information content of the numerous spectral channels, further improving the robustness of the outliers filtering by means of a highly robust estimator of multivariate location. The approach has been tested on different real hyperspectral datasets with very high spatial resolution. The analysis highlighted the effectiveness of the proposed strategy, providing reliable and very accurate estimation of the RMR statistics.

Paper Details

Date Published: 13 June 2012
PDF: 11 pages
Opt. Eng. 51(11) 111705 doi: 10.1117/1.OE.51.11.111705
Published in: Optical Engineering Volume 51, Issue 11
Show Author Affiliations
Nicola Acito, Accademia Navale di Livorno (Italy)
Salvatore Resta, Univ. di Pisa (Italy)
Marco Diani, Univ. di Pisa (Italy)
Giovanni Corsini, Univ. di Pisa (Italy)


© SPIE. Terms of Use
Back to Top