
Optical Engineering
Examination of the nonlinear dynamics of a chaotic acousto-optic Bragg modulator with feedback under signal encryption and decryptionFormat | Member Price | Non-Member Price |
---|---|---|
$20.00 | $25.00 |
![]() |
GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. | Check Access |
Paper Abstract
An acousto-optic Bragg cell with first-order feedback, which exhibits chaotic behavior past the threshold for bistability, was recently examined for possible chaotic encryption and recovery of simple messages (such as low-amplitude periodic signals) applied via the bias input of the sound cell driver. We carry out a thorough examination of the nonlinear dynamics of the Bragg cell under intensity feedback for (i) dc variations of the feedback gain () and the phase shift parameter (0) and (ii) ac variations of 0,total under signal encryption, investigating both from two different perspectives: (i) examining chaos in view of the so-called Lyapunov exponent derived recently by Ghosh and Verma and (ii) examining chaos in terms of the familiar bifurcation maps of intensity plotted against the feedback gain and the effective bias. It is shown that overall, the nonlinear dynamical results using the two approaches broadly agree, both for dc (fixed-parameter) analyses and, more importantly, when applied to the case of ac signal encryption cases. This affirms the effectiveness of the nonlinear dynamical theory in predicting and tracking the actual physical behavior of this system for message signal transmission and recovery under complex chaotic encryption.
Paper Details
Date Published: 6 February 2012
PDF: 11 pages
Opt. Eng. 51(1) 018003 doi: 10.1117/1.OE.51.1.018003
Published in: Optical Engineering Volume 51, Issue 1
PDF: 11 pages
Opt. Eng. 51(1) 018003 doi: 10.1117/1.OE.51.1.018003
Published in: Optical Engineering Volume 51, Issue 1
Show Author Affiliations
Mohammed A. Al-Saedi, Univ. of Dayton (United States)
Monish R. Chatterjee, Univ. of Dayton (United States)
© SPIE. Terms of Use
