Share Email Print

Optical Engineering

Scale-reduction rule without drop in the sensitivity of a silicon-based guided-wave optical pressure sensor using a micromachined diaphragm
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this study, an original scale-reduction rule without a drop in the sensitivity of a guided-wave optical pressure sensor was obtained using a micromachined diaphragm. The sensor has a rectangular diaphragm as a pressure-sensitive structure and a sensing waveguide across the diaphragm. Its sensitivity is theoretically known to be strongly dependent on the dimensions of the diaphragm. According to the theoretical results, the sensitivity can be kept constant even if the diaphragm dimensions are reduced as long as both the aspect ratio and the characteristic length of the diaphragm remain constant. Here, the characteristic length is introduced as the cube of either width or length of the rectangular diaphragm divided by the square of its thickness. Such a scale-reduction rule would be very useful for miniaturizing a sensor without reducing sensitivity, although it has not been experimentally confirmed. In this study, the scale-reduction rule was experimentally examined using three fabricated sensors with the same aspect ratio and the same characteristic length. The measured sensitivities of the three sensors were quite similar to each other, as theoretically predicted.

Paper Details

Date Published: 7 February 2012
PDF: 7 pages
Opt. Eng. 51(1) 014401 doi: 10.1117/1.OE.51.1.014401
Published in: Optical Engineering Volume 51, Issue 1
Show Author Affiliations
Masashi Ohkawa, Niigata Univ. (Japan)
Takashi Sato, Niigata Univ. (Japan)

© SPIE. Terms of Use
Back to Top