Share Email Print
cover

Neurophotonics • Open Access • new

Establishing the diffuse correlation spectroscopy signal relationship with blood flow

Paper Abstract

Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity vRBC, the autocorrelation is expected to decay exponentially with (vRBCτ)2, where τ is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient Dshear and an MSD of 6Dshearτ. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index (BFi) to quantify tissue perfusion. We find BFi to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

Paper Details

Date Published: 13 June 2016
PDF: 9 pages
3(3) 031412 doi: 10.1117/1.NPh.3.3.031412
Published in: Neurophotonics Volume 3, Issue 3
Show Author Affiliations
David A. Boas, Athinoula A. Martinos Ctr. for Biomedical Imaging (United States)
Sava Sakadžić, Athinoula A. Martinos Ctr. for Biomedical Imaging (United States)
Juliette J. Selb, Athinoula A. Martinos Ctr. for Biomedical Imaging (United States)
Parisa Farzam, Athinoula A. Martinos Ctr. for Biomedical Imaging (United States)
Maria Angela Franceschini, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging (United States)
Stefan A. Carp, Athinoula A. Martinos Ctr. for Biomedical Imaging (United States)


© SPIE. Terms of Use
Back to Top