Share Email Print
cover

Neurophotonics • Open Access

NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data
Author(s): Min Jee Jang; Yoonkey Nam

Paper Abstract

Optical recording facilitates monitoring the activity of a large neural network at the cellular scale, but the analysis and interpretation of the collected data remain challenging. Here, we present a MATLAB-based toolbox, named NeuroCa, for the automated processing and quantitative analysis of large-scale calcium imaging data. Our tool includes several computational algorithms to extract the calcium spike trains of individual neurons from the calcium imaging data in an automatic fashion. Two algorithms were developed to decompose the imaging data into the activity of individual cells and subsequently detect calcium spikes from each neuronal signal. Applying our method to dense networks in dissociated cultures, we were able to obtain the calcium spike trains of ∼1000 neurons in a few minutes. Further analyses using these data permitted the quantification of neuronal responses to chemical stimuli as well as functional mapping of spatiotemporal patterns in neuronal firing within the spontaneous, synchronous activity of a large network. These results demonstrate that our method not only automates time-consuming, labor-intensive tasks in the analysis of neural data obtained using optical recording techniques but also provides a systematic way to visualize and quantify the collective dynamics of a network in terms of its cellular elements.

Paper Details

Date Published: 28 July 2015
PDF: 15 pages
2(3) 035003 doi: 10.1117/1.NPh.2.3.035003
Published in: Neurophotonics Volume 2, Issue 3
Show Author Affiliations
Min Jee Jang, KAIST (Korea)
Yoonkey Nam, KAIST (Korea)


© SPIE. Terms of Use
Back to Top