Share Email Print
cover

Journal of Applied Remote Sensing

Optimizing extreme learning machine for hyperspectral image classification
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Extreme learning machine (ELM) is of great interest to the machine learning society due to its extremely simple training step. Its performance sensitivity to the number of hidden neurons is studied under the context of hyperspectral remote sensing image classification. An empirical linear relationship between the number of training samples and the number of hidden neurons is proposed. Such a relationship can be easily estimated with two small training sets and extended to large training sets to greatly reduce computational cost. The kernel version of ELM (KELM) is also implemented with the radial basis function kernel, and such a linear relationship is still suitable. The experimental results demonstrated that when the number of hidden neurons is appropriate, the performance of ELM may be slightly lower than the linear SVM, but the performance of KELM can be comparable to the kernel version of SVM (KSVM). The computational cost of ELM and KELM is much lower than that of the linear SVM and KSVM, respectively.

Paper Details

Date Published: 2 March 2015
PDF: 13 pages
J. Appl. Remote Sens. 9(1) 097296 doi: 10.1117/1.JRS.9.097296
Published in: Journal of Applied Remote Sensing Volume 9, Issue 1
Show Author Affiliations
Jiaojiao Li, Xidian Univ. (China)
Qian Du, Mississippi State Univ. (United States)
Wei Li, Beijing Univ. of Chemical Technology (China)
Yunsong Li, Xidian Univ. (China)


© SPIE. Terms of Use
Back to Top