Share Email Print
cover

Journal of Applied Remote Sensing

Geometric correction method to correct the influence of attitude jitter on remote sensing imagery using compressive sampling
Author(s): Pu Wang; Wei An; Xin-Pu Deng; Jun-Gang Yang
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Attitude jitter occurs widely in the applications of high-resolution satellites. It is a vital factor that deteriorates the accuracy of geopositioning and mapping. However, the normal geometric correction methods cannot eliminate the influence of jitter on remote sensing images. Therefore, it is important to design a method that can handle this problem. This paper presents a geometric correction method using a rational function model (RFM) and compressive sampling called RFM-CS. This method is divided into two modules: precorrection and compensation. In the precorrection part, the original image is geometrically corrected with an RFM. However, when raw images contain distortion caused by attitude jitter, the rational polynomial coefficients (RPCs) don’t approximate the real imaging process well, and there are significant residual distortions in precorrected images. In the compensation part, we propose a new idea by which the residual distortions of images can be expressed as two-dimensional signals, which are called distortion signals. Using the new idea and CS, distortion signals, even those containing the influence of attitude jitter, are exactly reconstructed with a small set of ground control points. Based on the reconstructed distortion signals, the residual geometric error in the remote sensing images can be compensated by resampling. The experiments with images from Advanced Spaceborne Thermal Emission and Reflection Radiometer, Advanced Land Observing Satellite, and simulation demonstrate the promising performance and feasibility of the proposed method.

Paper Details

Date Published: 2 June 2015
PDF: 18 pages
J. Appl. Remote Sens. 9(1) 095077 doi: 10.1117/1.JRS.9.095077
Published in: Journal of Applied Remote Sensing Volume 9, Issue 1
Show Author Affiliations
Pu Wang, National Univ. of Defense Technology (China)
Wei An, National Univ. of Defense Technology (China)
Xin-Pu Deng, National Univ. of Defense Technology (China)
Jun-Gang Yang, National Univ. of Defense Technology (China)


© SPIE. Terms of Use
Back to Top