Share Email Print

Journal of Micro/Nanolithography, MEMS, and MOEMS

Planar architecture for microstrip interfaced packaging of coplanar-waveguide-based radio frequency microelectromechanical system switches
Author(s): Shailendra Singh; Malalahalli Sreenivasamurthy Giridhar; Cheemalamarri V. N. Rao; Sangam Bhalke; Rifqul Islam
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

This paper describes the architecture of microstrip (MS) interfaced packaging of a coplanar-waveguide (CPW)-based radio frequency microelectromechanical systems (RF MEMS) switch in a hermetic metal-ceramic RF package. The switch is integrated along with CPW to MS (CPW-MS) transitions within the package itself. This makes the MS interfaced packaged switch module readily mountable on MS based RF boards and subsystems. The CPW-MS transition for the package was designed as a separate off-chip entity on an alumina substrate and utilizes via hole. The integrated three-dimensional model of the package consisting of the RF MEMS switch and the transitions was simulated using high frequency structure simulator. The realized module shows an insertion loss of 0.2 and 1.1 dB at 100 MHz and 7 GHz, respectively. The measured isolation is better than 60 dB at 100 MHz and 30 dB at 7 GHz. The return loss is better than 15 dB up to 7 GHz. The estimated packaging and transitioning loss is 0.5 dB at 5 GHz. This packaging architecture is a planar solution for the MS interfaced packaging of CPW based RF MEMS switches for designers who do not have access to high-end technologies, such as zero-level packaging, through silicon via or low temperature co-fired ceramics.

Paper Details

Date Published: 27 February 2015
PDF: 7 pages
J. Micro/Nanolith. 14(1) 015002 doi: 10.1117/1.JMM.14.1.015002
Published in: Journal of Micro/Nanolithography, MEMS, and MOEMS Volume 14, Issue 1
Show Author Affiliations
Shailendra Singh, Space Applications Ctr. (India)
Malalahalli Sreenivasamurthy Giridhar, Indian Space Research Organisation (India)
Cheemalamarri V. N. Rao, Space Applications Ctr. (India)
Sangam Bhalke, Gallium Arsenide Enabling Technology Ctr. (India)
Rifqul Islam, Indian Space Research Organisation (India)

© SPIE. Terms of Use
Back to Top