Share Email Print

Journal of Medical Imaging

Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides
Author(s): Matthew Balazsi; Paula Blanco; Pablo Zoroquiain; Martin D. Levine; Miguel N. Burnier
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Invasive ductal breast carcinomas (IDBCs) are the most frequent and aggressive subtypes of breast cancer, affecting a large number of Canadian women every year. Part of the diagnostic process includes grading the cancerous tissue at the microscopic level according to the Nottingham modification of the Scarff-Bloom-Richardson system. Although reliable, there exists a growing interest in automating the grading process, which will provide consistent care for all patients. This paper presents a solution for automatically detecting regions expressing IDBC in images of microscopic tissue, or whole digital slides. This represents the first stage in a larger solution designed to automatically grade IDBC. The detector first tessellated whole digital slides, and image features were extracted, such as color information, local binary patterns, and histograms of oriented gradients. These were presented to a random forest classifier, which was trained and tested using a database of 66 cases diagnosed with IDBC. When properly tuned, the detector balanced accuracy, F1 score, and Dice’s similarity coefficient were 88.7%, 79.5%, and 0.69, respectively. Overall, the results seemed strong enough to integrate our detector into a larger solution equipped with components that analyze the cancerous tissue at higher magnification, automatically producing the histopathological grade.

Paper Details

Date Published: 18 May 2016
PDF: 9 pages
J. Med. Imag. 3(2) 027501 doi: 10.1117/1.JMI.3.2.027501
Published in: Journal of Medical Imaging Volume 3, Issue 2
Show Author Affiliations
Matthew Balazsi, McGill Univ. (Canada)
Paula Blanco, McGill Univ. (Canada)
Pablo Zoroquiain, McGill Univ. (Canada)
Martin D. Levine, McGill Univ. (Canada)
Miguel N. Burnier, McGill Univ. (Canada)

© SPIE. Terms of Use
Back to Top